In the previous post Pilot decontamination in angular domain I have introduced a pilot contamination reduction method which relies on the AoA distinction between the desired user and the interference users. The proposed MMSE-based estimator leads to full pilot decontamination under the strict condition that the desired and interference channels do not overlap in their AoA regions.

When this non-overlapping condition does not hold (owing to the random user location and scattering effects), the MMSE-based estimator will only alleviate pilot contamination, not eliminate. In this post, I will show a much enhanced pilot decontamination method [1] that combines the merits of the MMSE estimator and the known amplitude based projection method [2]. Our asymptotic analysis indicates that the new method requires weaker conditions compared to the previously proposed methods to achieve full pilot decontamination.

Before introducing the new method, let’s first have a brief review of the key results of the MMSE-based estimator and the amplitude based projection method.

**MMSE-based estimator**

When the interference channels do not overlap with the desired channel in angular domain, then pilot contamination vanishes. A typical example is shown in Fig. 1.

More information about the asymptotical result can be found here.

**Amplitude based projection method [2]**

The basic idea of this method is to project the received signal onto the subspace spanned by the desired channels. This subspace is obtained by EVD/SVD of the received data signals. If we plot the histogram of the eigenvalues of the empirical instantaneous covariance matrix built from the received data, we can identify three bulks of eigenvalues as in Fig. 2. The bunch of weakest eigenvalues corresponds to the noise. The bulk of dominant eigenvalues are the signals of interest. The bulk in between denotes the inter-cell interference.

When the interference channels are weaker than the desired channels, i.e., the bulk of desired signals and the bulk of interference are separable in power domain, then pilot contamination vanishes asymptotically with the number of antennas and the coherence time . A simple example is shown in Fig. 3, where user and user share the same pilot sequence.

The EVD/SVD-based blind channel estimator achieves the following result. If the following condition holds

, (1)

then pilot contamination vanishes as .

In reality, the non-overlapping conditions may hold in only one domain, angular or power, depending on the user’s location. Moreover, in some cases, the interference may overlap with the desired signal in both angular domain and power domain, like the two blue users in Fig. 4. In such situations, neither the MMSE-based estimator nor the EVD/SVD based estimator could eliminate pilot contamination.

So, is there a simple approach to cope with all these situations?

The answer is YES. With our newly proposed Covariance-aided Amplitude based Projection method in [3], we can achieve full decontamination even in the case shown in Fig. 4.

**Covariance-aided Amplitude based Projection**

The basic idea is to apply a statistical filter on the received data signal before performing the EVD/SVD-based amplitude based projection. This filter is a function of the channel’s second-order statistics. The purpose of this filter is to bring down the power of interference while preserving the power of the desired signal. Our asymptotical analysis shows that if the filtered desired signal is stronger than the filtered interference, then the channel estimation error vanishes completely with the number of antennas and the coherence time . In other words, if the following condition holds,

, (2)

then

The condition (2) is in general less restrictive than the condition (1), which is required by the amplitude-based projection method [2].

This Covariance-aided Amplitude based Projection method outperforms the MMSE-based estimator in [1] when the non-overlapping condition in angular domain is not satisfied. A demonstration is shown in Fig. 5 for a ULA base station.

Suppose the desired user (green) and the interference user (red) have approximately the same signal strength at BS 1. The angular support of the desired user is the green sector while the angular support of the interference, i.e, the red sector, is half overlapping with that of the desired user. In this case, the two users are overlapping in both power domain and angular domains. Consequently neither the MMSE-based estimator nor the EVD/SVD based estimator will work. In contrast, our new method in [3] will. To give an intuitive interpretation, let’s decompose the interference channel into two parts, the the multipath that fall into the desired AoA support and , the multipath falling outside. The statistical filter will filter out , with the residual interference signal greatly weakened. Now this residual interference can be removed by the EVD/SVD based estimator, since it’s no longer overlapping with the desired signal in power domain.

For the choice of , math proofs, please refer to [3], where you may also find the generalization to multi-user per cell setting and the low-complexity alternatives of this method.

References

[1] H. Yin, D. Gesbert, M. Filippou and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE J. Sel. Areas Commun., Vol. 31, No. 2, pp. 264-273, Feb. 2013.

[2] R. R. Müller, L. Cottatellucci, and M. Vehkaperä, “Blind pilot decontamination,” IEEE J. Sel. Topics Signal Process, vol. 8, no. 5, pp. 773–786, Oct. 2014.

[3] H. Yin, L. Cottatellucci, and D. Gesbert, R. R. Müller, and G. He, “Robust pilot decontamination based on joint angle and power domain discrimination,” IEEE Trans. Signal Process., Vol. 64, No. 11, pp. 2990-3003, Jun. 2016.